On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming
نویسندگان
چکیده
Interior point methods were widely used in the past in the form of barrier methods. In linear programming, the simplex method dominated, mainly due to inefficiencies of barrier methods. Interior point methods became quit popular again after 1984, when Karmarkar announced a fast polynomial-time interior method for nonlinear programming [Karmarkar, 1984]. In this section we present primal-dual interior point methods for linear programming.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملOn a Wide Region of Centers and Primal-Dual Interior Point Algorithms for Linear Programming
In the adaptive step primal dual interior point method for linear programming polynomial algorithms are obtained by computing Newton directions towards targets on the central path and restricting the iterates to a neighborhood of this central path In this paper the adaptive step methodology is extended by considering targets in a certain central region which contains the usual central path and ...
متن کاملTheoretical convergence of large-step primal-dual interior point algorithms for linear programming
This paper proposes two sets of rules Rule G and Rule P for controlling step lengths in a generic primal dual interior point method for solving the linear program ming problem in standard form and its dual Theoretically Rule G ensures the global convergence while Rule P which is a special case of Rule G ensures the O nL iteration polynomial time computational complexity Both rules depend only o...
متن کاملInterior-Point Algorithms Based on Primal-Dual Entropy
We propose a family of search directions based on primal-dual entropy in the context of interior point methods for linear programming. This new family contains previously proposed search directions in the context of primal-dual entropy. We analyze the new family of search directions by studying their primal-dual affine-scaling and constant-gap centering components. We then design primal-dual in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 18 شماره
صفحات -
تاریخ انتشار 1993